1.修一段路计划16人20天完成,这16人工作了5天后,增加4人,如果这些人的工作效率相同,问提前几天完成修路任务?
2.某饭店要安装空调240台,已知10名工程技术人员8小时能安装空调64台,现饭店要求安装公司在12小时内装完,需要增派同样工作效率的技术人员多少名?
3.某工程原计划42人12天(每天按8小时工作)完成,工作7天后因支援其他紧急任务调走了12人,那么剩下的工作还要几天才能完成?若要求按原定日期完工,那么每天得工作多少小时?
4.小强家住三层,从一层到三层需要走60秒钟,按此速度,从一层到六层需要多少秒钟?
5.加工9600套服装,30人10天完成了3600套,又增加了20人,剩下的还需要几天完成?
答案仅供参考:
1.设一人工作一天为一“日工”.
(1)修这段路的工作总量为:
16×20=320(日工)
(2)修了5天,还剩的工作量为:
320-16×5=240(日工)
(3)剩下的工作量(16+4)人需做的天数:
240÷(16+4)=12(天)
(4)提前的天数:
20-(12+5)=3(天)
综合列式:
20-[(16×20-16×5)÷(16+4)+5]
=20-[(320-80)÷20+5]
=20-(12+5)
=3(天)
2.(1)一名技术人员1小时安装空调:
64÷10÷8=0.8(台)
(2)240台空调12小时装完,需要技术人员为:
240÷12÷0.8=25(人)
(3)需要增加技术人员:
25-10=15(名)
综合列式:
240÷12÷(64÷10÷8)-10
=20÷0.8-10
=25-10
=15(名)
3.设1人工作一天为一“日工”.
(1)工程的工作总量为:
42×12=504(日工)
(2)工作7天后,还剩工作量为:
504-42×7=504-294=210(日工)
(3)剩下的工作量(42-12)人做,需要的天数:
210÷(42-12)=7(天)
再求第二问:
设一人工作一小时为一“工时”.
(1)剩下的工作量用“工时”表示为:
210×8=1680(工时)
(2)按期完成,每天需要工作:
1680÷(42-12)÷(12-7)=11.2(小时)
第二问另解:
(1)42人每天工作 8小时一天可完成的工时是:42×8=336(工时)
(2)要按期完成,剩下的 30人每天必须完成336个工时所以每天工作时间为:
336÷30=11.2(小时)
综合算式,第一问:
(42×12-42×7)÷(42-12)=7(天)
第二问:
42×8÷30=11.2(小时)
4.(1)小强从一层到三层需走60秒钟,则上每层楼需要的时间为:
60÷2=30(秒)
(2)从一层到六层需走的时间为:
30×(6-1)=150(秒)
5.(1)每人每天生产服装:
3600÷30÷10=12(套)
(2)剩下的需要完成的天数:
(9600-3600)÷[(30+20)×12]=10(天)
综合列式:
(9600-3600)÷[(30+20)×(3600÷30÷10)]
=6000÷[50×12]
=6000÷600
=10(天)(深圳家教·上门家教提供) |